Permutation patterns, Stanley symmetric functions, and generalized Specht modules

نویسندگان

  • Sara Billey
  • Brendan Pawlowski
چکیده

Article history: Received 1 September 2013 Available online xxxx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized matrix functions, determinant and permanent

In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...

متن کامل

Permutation Resolutions for Specht Modules of Hecke Algebras

In [BH], a chain complex was constructed in a combinatorial way which conjecturally is a resolution of the (dual of the) integral Specht module for the symmetric group in terms of permutation modules. In this paper we extend the definition of the chain complex to the integral Iwahori Hecke algebra and prove the same partial exactness results that were proved in the symmetric group case.

متن کامل

Hoeffding spaces and Specht modules

It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.

متن کامل

Boltje-maisch Resolutions of Specht Modules

In [5], Boltje and Maisch found a permutation complex of Specht modules in representation theory of Hecke algebras, which is the same as the Boltje-Hartmann complex appeared in the representation theory of symmetric groups and general linear groups. In this paper we prove the exactness of Boltje-Maisch complex in the dominant weight case as conjectured in [5].

متن کامل

Specht Modules and Branching Rules for Ariki-koike Algebras

Specht modules for an Ariki-Koike algebra Hm have been investigated recently in the context of cellular algebras (see, e.g., [GL] and [DJM]). Thus, these modules are defined as quotient modules of certain “permutation” modules, that is, defined as “cell modules” via cellular bases. So cellular bases play a decisive rôle in these work. However, the classical theory [C] or the work in the case wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2014